Global Attractor and Dimension Estimation for a 2D Generalized Anisotropy Kuramoto-Sivashinsky Equation
نویسندگان
چکیده
منابع مشابه
Trajectory and Attractor Convergence for a Nonlocal Kuramoto-Sivashinsky Equation
The nonlocal Kuramoto-Sivashinsky equation arises in the modeling of the flow of a thin film of viscous liquid falling down an inclined plane, subject to an applied electric field. In this paper, the authors show that, as the coefficient of the nonlocal integral term goes to zero, the solution trajectories and the maximal attractor of the nonlocal Kuramoto-Sivashinsky equation converge to those...
متن کاملExact Solutions of the Generalized Kuramoto-Sivashinsky Equation
In this paper we obtain exact solutions of the generalized Kuramoto-Sivashinsky equation, which describes manyphysical processes in motion of turbulence and other unstable process systems. The methods used to determine the exact solutions of the underlying equation are the Lie group analysis and the simplest equation method. The solutions obtained are then plotted.
متن کاملNonlinear Forecasting of the Generalized Kuramoto-Sivashinsky Equation
Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online's data policy on reuse of materials please consult the policies page. We study the emergence of pattern formation and chaotic dynamics in the one-dimensional (1D) generalized Kuramoto-Sivashinsky (gKS) equation by means of a ...
متن کاملInertial Manifolds for the Kuramoto-sivashinsky Equation
A new theorem is applied to the Kuramoto-Sivashinsky equation with L-periodic boundary conditions, proving the existence of an asymptotically complete inertial manifold attracting all initial data. Combining this result with a new estimate of the size of the globally absorbing set yields an improved estimate of the dimension, N ∼ L.
متن کاملexact solutions of the generalized kuramoto-sivashinsky equation
in this paper we obtain exact solutions of the generalized kuramoto-sivashinsky equation, which describes manyphysical processes in motion of turbulence and other unstable process systems. the methods used to determine the exact solutions of the underlying equation are the lie group analysis and the simplest equation method. the solutions obtained are then plotted.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Modern Nonlinear Theory and Application
سال: 2014
ISSN: 2167-9479,2167-9487
DOI: 10.4236/ijmnta.2014.34018